Lanthanum(III) Triflate-Catalyzed Cyclopropanation via Intramolecular Methylene Transfer

David J. Hardee and Tristan H. Lambert

J. Am. Chem. Soc. ASAP

Stereoselective Cycloropanation Reactions

$$\begin{array}{c|c} & \xrightarrow{\text{"MCH}_2X"} & & & \\ \hline \end{array} \hspace{1cm} (1)$$

Halomethylmatal (Zn, Sm, Al)-Mediated Cyclopropanation Reactions

Transition Metal-Catalyzed Decomposition of Diazo Compounds

$$= \left\langle \begin{array}{c} \overline{RCH-LG} \\ \overline{EWG} \\ \overline{R} \end{array} \right\rangle = \left\langle \begin{array}{c} \overline{RCH-LG} \\ \overline{R} \end{array} \right\rangle = \left\langle \begin{array}{c} \overline{RCH-LG}$$

Nucleophilic Addition-Ring Closure

$$= \underbrace{\begin{array}{c} \overline{RCH_2} \\ -LG \end{array}} \underbrace{\begin{array}{c} \overline{RCH_2} \\ EWG \end{array}} \underbrace{\begin{array}{c} \overline{RCH_2} \\ -R \end{array}}$$

Chem. Rev. **2003**, 103, 977-1050. Chem. Rev. **2007**, 107, 3117-3179. Synlett **1995**, 1197.

Halomethylmetal-Mediated Cyclopropanation Reactions

• Emschwiller (1929):

$$CH_2I_2 + Zn \longrightarrow IZnCH_2I$$

• Simmons and Smith (1958):

- Wittig (1961): $ZnI_2 + CH_2N_2 \rightarrow IZnCH_2I (Zn(CH_2I)_2)$
- Furukawa (1966): Znl₂ + Et₂Zn → EtZnCH₂I
- Molander, Yamamoto

"MCH
$$_2$$
X" RZnCH $_2$ I, RSmCH $_2$ I R $_2$ AICH $_2$ I

Compt. Rend. **1929**, 188, 1555. J. Am. Chem. Soc.. **1958**, 80, 5323. Justus Liebigs Ann. Chem. **1961**, 650, 18. J. Am. Chem. Soc.. **1992**, 114, 2592.

J. Am. Chem. Soc.. **1996**, 118, 6792.

Halomethylmetal-Mediated Cyclopropanation Reactions: Acyclic Alkenes

conditions	ratio 31:32	
Zn/Cu, CH ₂ I ₂ , ether	56:4446	
Et_2Zn , CH_2I_2 (1:1), CH_2Cl_2	86:14	
$\mathrm{Et_2Zn}$, $\mathrm{CH_2I_2}$ (1:1), ether	67:33	
$Zn(CH_2I)_2$, CH_2Cl_2	67:33	
Sm(Hg), CH ₂ I ₂ , THF	25:75	

Chem. Rev. **1993**, 93, 1307. Chem. Rev. **1989**, 89, 1841.

Transition Metal-Catalyzed Decomposition of Diazoalkanes

$$R \nearrow R' + N_2CHR" \xrightarrow{Catalyst} R'$$

$$N_2 \rightleftharpoons EWG^1$$
 EWG^2

$$N_2 \rightleftharpoons R$$

$$H \bigvee_{N_2} NO_2$$

Metals: Cu, Rh, Ru, Os, Co, Fe, Pd, Pt, Cr

chiral auxilaries

chiral catalysts

Chem. Rev. 2003, 103, 977. J. Am. Chem. Soc. 2001, 123, 7616. Chem. Eur. J. 2002, 8, 177.

Title Paper: Cyclopropanation via Intramolecular Methylene Transfer

5 mol%

	OBn 1	base, add DCE, re		OBn	3
entry	catalyst	base (0.05 equiv)	LiClO ₄ (equiv)	time (h)	% yield
1	$Mg(OTf)_2$		0	12	4
2	$Zn(OTf)_2$		0	12	15
3	$Al(OTf)_3$		0	12	7
4	Bi(OTf) ₃		0	12	<5
5	$Yb(OTf)_3$		0	12	22
6	Eu(OTf) ₃		0	12	22
7	La(OTf) ₃		0	12	40
8	La(OTf) ₃	NEt_3	0	18	49
9	La(OTf) ₃	TMU	0	18	40
10	La(OTf) ₃	pyridine	0	18	25
11	La(OTf) ₃	2,6-lutidine	0	18	54
12	La(OTf) ₃	2,6-lutidine	0.75	3	72
13		2,6-lutidine	0.75	18	46
14	La(ClO ₄) ₃	2,6-lutidine	0	6	38

^a Reactions were run in the presence of 5 mol % Lewis acid at a concentration of 0.2 M in DCE at reflux.

J. Am. Chem. Soc. 2009, ASAP.

Sequential Stereocontrolled Cyclopropane formation – Semi-pinacol Rearrangement

- multiple equivalents of Lewis acid promoter were used
- methylene is transferred in a constrained system

Marson, C. M. et al. Tetrahedron Lett. 2003, 44, 141.

Epoxy Alcohol Rearrangements: Hydroxyl-Mediated Delivery of Lewis Acid Promoters

Morgans, D. J.; Sharpless, K. B. J. Am. Chem. Soc. 1981, 103, 462.

Title Paper: Substrate Scope Studies for La(OTf)₃-Catalyzed Intramolecular Methylene-Transfer Cyclopropanation

entry	substrate	product	temp (°C)	% yield	d.r.
1	O,,	O O O O O O O O O O O O O O O O O O O	80	72	
2	O,, OBn Me	O ÖBn OBn	Ле ₄₀	72	>20:1
3	O,, OBn Me	OBn Me	40	73	>20:1
4	OBn Me 88:12 d.r.	Me OBn Me	.Me 40	71	82:18 ^c
5	O,, Me OBn Me	Me	40	75	>20:1
6	n-Bu 0	-Bu OBn M	60	26 ^d	>20:1
7	BnO	BnO	Ле 1 40	84	>20:1
8 M	Me OBn Me	O H Me	Me 60	30	>20:1

^a Reactions were run in the presence of 5 mol % La(OTf)₃, 5 mol % 2,6-lutidine, and 0.75 equiv of LiClO₄ at a concentration of 0.2 M in DCE. ^b Yields for entries 1−3 were determined using the alcohol products resulting from reduction of the crude reaction mixtures with NaBH₄. Diastereomeric ratios were determined by ¹H NMR analysis on crude reaction mixtures. ^c The starting material was an 88:12 inseparable mixture of isomers diastereomeric at the 4 and 5 (methyl-bearing) positions. ^d A major side product (~30%) appeared to be 2-pentyloct-6-enal resulting from Wagner−Meerwein rearrangement.

- terminal olefins require reflux; internal olefins react at lower temperatures
- process is stereospecific
- substitution along the carbon chain is well tolerated
- chelating motif is necessary
- internal epoxides react in lower yield

Hardee, D. J.; Lambert, T. H. J. Am. Chem. Soc. 2009, ASAP.

Title Paper: Proposed Mechanism for Methylene-Transfer Reaction

J. Am. Chem. Soc. 2009, ASAP.

Title Paper: Synthesis of an Enantioenriched Cyclopropane via Asymmetric Epoxydation/Methylene Transfer

Sharpless asymmetric epoxidation 91% yield 90% ee 9 Me 85% yield
$$\frac{10 \text{ mol}\%}{\text{La}(\text{OTf})_3}$$
 $\frac{\text{LiClO}_4}{\text{2,6-lutidine}}$ $\frac{\text{LiClO}_4}{\text{DCE}, 40 °C}$ $\frac{11 \text{ R} = \text{CH}_2\text{OBn}}{\text{12 R} = \text{OH}}$ $\frac{\text{i) H}_2, \text{Pd/C}}{\text{ii) NalO}_4}$ $\frac{\text{NaH}}{\text{NaH}}$

J. Am. Chem. Soc. 2009, ASAP.

Conclusions

- New cyclopropanation strategy based on intramolecular methylene transfer from epoxydes to olefines
- Optimal yields were obtained with LiClO₄ as an additive, though its role is not clear
- Both internal and terminal olefins react (internal olefins reacts faster at lower temperatures)
- The reaction is stereospecific
- Chelating group is necessary, but need not reside along the carbon backbone between the epoxide and olefin moieties
- The mechanism involves Lewis acid activation of the substrate followed by semi-pinacol rearrangement
- The methylene transfer reaction can be used for the synthesis of enantioenriched cyclopropanes